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SUMMARY

Simple lower bounds for A-; D-, E- and L-efficiency of some two-way
elimination of heterogeneity designs are derived. The bounds are obtained
for treatment effects on the basis of the eigenvalues of information matrix
C with respect to the diagonal matrix R.
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1. Introduction

Any arrangement of v treatments in b; rows and bo columns is called a
two-way elimination of heterogeneity design. Let r = (7, ...,rv)', ki =
(K1yy ey klbl)’ and ko = (ko ..., kgbz)/ denote a vector of treatment replica-
tions, a vector of row sizes and a vector of column sizes, respectively. Let
R, K; and Ky be the diagonal matrices with the successive elements of r,
k; and ks on their diagonals. Moreover, let N; be the v x b; treatment-row
incidence matrix, let N9 be the v X by treatment-column incidence matrix.
The C-matrices of the two related subdesigns are

C, =R - N,K;'N, (1)

with s = 1 for the treatment-row subdesign and s = 2 for the treatment-
column subdesign.

In this paper we consider designs with information matrix for the treat-
ment effects defined by Berube and Styan (1993):

C =6C1 + &Gy — §Cy, (2)

where & > 0, & > 0, and & > 0, Co = R — rr' /n and n is the number
of experimental units. Let D (n, v, b1, b2, "min, Tmazs K1maw s K2maexs 1) denote
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the set of two-way elimination of heterogeneity designs whose C-matrix

admit a representation in the form (2), where 7, = 11312 Tiy Tmaz =
SISsv

max r;, ki = max k1., ko = max ko., and h is the rank of C

1<i<o 7O 0Kl T T 1<ty Y

(h <wv—1,if h=wv —1 then a design is said to be connected).

It should be noted that in the theory of experimental designs, A-, D- and
E-optimality is often considered. For example, Filipiak and Szczepanska
(2005) and Moerbeek (2005) considered A-, D- and E-optimality for de-
signs for quadratic and cubic growth curve models and for designs for
polynomial growth models with auto-correlated errors, respectively. A-
optimal chemical balance weighing designs and A-optimal designs under
a quadratic growth curve model in the transformed time interval are pre-
sented respectively by Ceranka et al. (2007) and Filipiak and Szczepariska
(2007). The E-optimality of some two-way elimination of heterogeneity de-
signs, of nested row-column designs, of designs in irregular BIB settings, of
designs with three treatments and of designs under an interference model is
considered by Koztowska and Walkowiak (1990a), Brzeskwiniewicz (1995),
Bagchi (1996), Morgan and Reck (2007) and Filipiak and Rézanski (2005),
respectively. Note that A-, D-, E- and L-efficiency for block designs is
described by Brzeskwiniewicz (1996).

2. Results

For a design d € D (n,v,b1,b2, "min: Tmazs Klmas s K2maes 1) let 0 = €4, <
€d, < ... <€, , <1 be eigenvalues of its C-matrix with respect to the
matrix R. Define

Sar(d) =i neq's dpir(d) =L ney's
(3)
¢pr(d) = €d,_,,; drir(d) = 302, ) €a,-

A design d is A- or D-optimal if it minimizes the values ¢ 4/r(d) or ¢p|r(d)
among all those possible from some class of designs. A design d is E- or
L-optimal if it maximizes the values ¢pr(d) or ¢r r(d) among all those
possible from some class of designs. The A-, D-, E- and L-efficiency of a
design d is defined to be

AN . _ épir(dp)
e pin(d) ¢p|r (d) e () = orir (d)
EIR opr(dy)’ e orir(dy)’
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where d%, d},, d; and d} are A-, D-, E- and L-optimal designs, respectively.

One problem with these definitions is that optimal designs are known
only for some special cases. Therefore, in the next section simple lower
bounds of (4) will be given as some measures of the efficiencies of design d.
First let us assume that & 4+ & — & < 1.

2.1. Lower bounds of e4 /g and ep/r

Note that for d € D (n,v, b1, b2, "min, Tmazs Klimass K2maes 1) from (1) and (2)
we have

€, , = P'R1Cp=¢&p'p + &p'p-
~&P RN K[ "N p — &p'RTINLK, 'Nyp — &op'p+
PR M p <&+ & -+ &P Ep=6+& &

because p’p = 1 and p’1 = 0, where p is the eigenvector of matrix R™1C.
From above and (3) we have

and dpip(dp)> —————— (5)

Gar (d4) = €+ 60— &)

_&+&—@

Next, observe that tr (R*1C) = Z;’:_Ul_ h €d; < h. In many cases a different
method of estimation can be used, namely from (1) and (2) we have

tr (R_1C) =tr (R_l (£1C1 + &Cy — 5000)) =

v by 77,2 v ba n2
512(1—Zrk1>+522<—2rk2> foZ( )é
1 7=1

J]= =1

1=

v v by
( Z Ti klmx Z ndw) +& (U - Zl mkzlmax Zlndu') =
=1 = =

é‘l v(klmax

Imax

+£ kzmax 1) — t7

k2max

because 1'r = n and ZJ 1Ny = ?2’:1 ng,; = Ti.
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Note that
iy ned

_ = i ot 7

€d = <z (7)
and

v—1 v—
> 6;11 > % and I 6311 > 5 (8)

i=v—h i=v—h

From (7) and (8) we have, in particular,
oy PP s (Y

bar (dy) = — and ¢pig (dp) > 7 9)

From (5) and (9) follows that
. . 2
phiajr (dy) 2 max{gl+£2 & T }
. « 1 h h

pthm (dD) 2 max { (&1+&2—)"’ (t) } ’

which leads (see (4)) to
h
max { gt 1} max { gt (1)"}
51+§2 §0 t §1+&2—&’ \1
e d) > , € d) > 10
and therefore two efficiency lower bounds of e4 and ep are defined as
n? 1 hyh
P e =ik R iz O
¢4 1r(d) ¢p|r(d)

We have so far considered two-way elimination of heterogeneity designs
fulfilling the condition & + & — & < 1. There exist designs where the
inequality &1 +& — &y > 1 is satisfied. For those designs the efficiency lower
bounds of e4 and ep are defined as

max{h, hTQ} max{l, (?)h}

dar(d) “Din(d) =

ey p(d) = (12)
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2.2. Lower bounds of ep/r

Let row and column designs ds, s = 1,2 with information matrix Cy (see
(1)) contain a row (a column) which consists of m common distinct treat-
ments and 2 < m < v — 1. We assume, by relabelling the treatments and
reshuffling the row (column) as necessary, that the first row and column
consists of m distinct treatments with numbers 1,...,m and the first row
size is k1, and the first column size is ko,. Then

v
€d; < o —m) (§1P4, (m) + &Py, (m) — &oPyy(m)) = Py(m),  (13)
where Py (m) = ZT’{%ilnm (1 - ksl ) - k;;:, s = 1,2 and the princi-

2
pal minor of Cy is at least Py, (m) = m (1 - %‘x‘), because Y i 1 —

2
ity < Y ri—%. Note that in the paper of Brzeskwiniewicz

m . 2
1995) we have weak equality Py, (m) =Y " r; — M On the other
( 0 i=1 n
hand

v
€d; < m (flel + f2Td2 - fOTdo) = Tda (14)
where Ty, = 1 — ;o2 — (Brzeskwiniewicz (1995)) and Ty, = 1 — fax

2 2
because the i-th diagonal element of Cy is equal to r; — %, and r; — % =
B (1 N %) < Tmax (1 - rm%) Note that in the paper of Brzeskwiniewicz
(1995) we have weak equality Ty, = rmax (1 — 222).

From (13) and (14) we have !

¢p|r (dp) < min{Py(m), Ta}. (15)
Observe that from (15) and (4) it follows that
d
() > A (16

min{ Py(m), Ty}
and therefore the lower bound of eg is defined as

/ B ¢p|r(d)
€pr (d) = min{Py(m), Ty}
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2.3. Lower bounds of e,/

From (3) and (6) we have

¢rir (dr) <t (18)
Formulae (18) and (4) imply that
d
err(d) > qﬁL“;() (19)

and therefore the lower bound of ey, is defined as

e ) = 208D, 20

3. Examples

We consider the A-, D-, E- and L-efficiency of the designs shown in Tables
1 and 2.

Table 1. Table 2.
Columns Columns
Rows| 1 2 3 4 Rows| 1 2 3 4 5 6 7
1 1 2 4 3 1 3 5 2
2 7 8 5 6 2 4 6 3
3 5 6 1 2 3 5 7 4
4 3 4 8 7 4 5 6 1
5 6
6 3 7 1
7 2 4 1

In the case of Table 1, d € D(16,8,4,4,2,2,4,4,7) with& =& =& =1
and €g, = €4, = €4, = €4, = 5, €45 = €4y = €q, = 1 Kozlowska and
Walkowiak (1990b). We calculate ¢ (d) occurring in (3) as: ¢|g(d) = 11,
ép|r(d) =16, ¢pr(d) = % and ¢r|r(d) = 5. But di and dz have no block
with m distinct treatments, thus we calculate only Ty occurring in (13)
as T; = 2. Hence according to formulae (11), (17) and (18) we obtain:
e’A‘R(d) = L, e’D‘R(d) = &, 63’3|R(d) = 0.7 and e’L‘R(d) = 2. We have
obtained a high €’;(d) value, therefore we consider that this design is close
to an E-optimal design, but is far from being an A-, D- and L-optimal

design.
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In Table 2, d € D(21,7,7,7,3,3,3,3,6) with & + & =1, § = ¢ and
€d, = €dy = €dy = €4, = €45 = €4y = 1 (Agrawal (1966)). From (3) we have:
¢ar(d) = 18, ¢pir(d) = 3% ¢pr(d) = 5 and @pr(d) = 2. But di and dy
have a block with m = 3 distinct treatments, thus we calculate the P;(3)
and Ty occurring in (13) and (14), respectively; Py(3) = T; = . From
(11), (17) and (20) we obtain: e;HR(d) =3, e’DlR(d) = (2)8, eSE|R(d) =1
and e’L‘R(d) = % This design is far from being an A-, D- and L-optimal
design, but it is an E-optimal design (ez(d) = 1).
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